Exercise: Synchronous machine alternator: Study of the power supply of an Airbus A320

In flight, the electrical generation is ensured by two main alternators of **90 kVA** which deliver a three-phase system of voltages **115V / 200V**, **400Hz**. The frequency **is kept constant** thanks to a hydraulic regulation of the rotation speed of the alternators.

We are interested in studying the **unsaturated alternator**.

The aircraft's electrical system is powered in 400 Hz.

For the Airbus A320 the manufacturer gives:

Rated voltage V _N /U _N	115 V / 200 V
Number of phases	3
Rated apparent power S _N	90 kVA
Rated frequency f _N	400 Hz
Rated rotation speed n _N	$12.0 \times 10^3 \text{ rpm}$
Power factor	$0.75 < \cos \varphi < 1$
Armature resistance (per phase) R _S	10 mΩ

The armature is **star-coupled**.

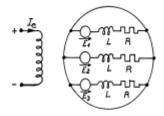
Two tests were performed at constant rated speed: **n**_N.

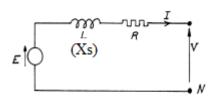
- <u>- Genrator at no-load test:</u> no-load characteristic $E_o(I_e)$ where $\mathbf{E_0}$ is the value of induced electromotive force at no load in one winding and $\mathbf{I_e}$ the intensity of the inductive current. The characteristic is a **straight line** such that for $\mathbf{I_e}$ =0 **corresponds** $\mathbf{E_0}$ =0 and for $\mathbf{I_e}$ =92 A **corresponds** $\mathbf{E_0}$ =400 V.
- <u>- Short-circuit test:</u> in the useful range, the short-circuit characteristic is the line with equation $I_{sc} = 3.07 \times I_e$, where I_{sc} is the rms value of the short-circuit current in a stator winding.
- 1- We are interested in nominal operation:
- a) Calculate the pulsation of the output voltages of the alternator.
- b) Determine the number of pole pairs of the machine.
- c) Calculate the rms value of the nominal armature current In.
- 2- We assume the alternator unsaturated.

- a) Drop its equivalent model by phase represented.
- b) Calculate the synchronous impedance of the alternator Z_s .
- c) Deduce the synchronous reactance $X_s = L_s \omega$.
- 3- In the rest of the problem, the influence of stator resistance $R_{\rm S}$ is neglected.
- a) Determine the intensity of the inductive current I_{eo} for no-load operation at rated (nominal) voltage $V=115\ V$.
- b) We consider a balanced three-phase load. The alternator operates in nominal conditions; it delivers its rated current I_N , behind ("en retard") the voltage.

For $\cos \varphi = 0.75$, represent the vector diagram of the voltages and deduce:

- the value of the e.m.f induced **Eo**.
- the new value of the excitation current Ie for maintaining V = 115 V at $cos\phi = 0.75$ when the alternator delivers its nominal current I_N .


Correction


a)
$$\omega = 2\pi f = 25.1 \times 10^2 \, rd/s$$

b) $\Omega = \frac{\omega}{v} \rightarrow p = 2$

b)
$$\Omega = \frac{\omega}{n} \rightarrow p = 2$$

c)
$$S_n = 3 V_n I_n = \sqrt{3} \times U_n \times I_N \rightarrow I_N = \frac{90.10^3}{3 \times 115} = 260 A$$

a)

Equivalent circuit of the synchronous machine

b)
$$\underline{V} = \underline{E_V} - \underline{Z_S} \cdot \underline{I}$$
 et $\underline{Z_S} = \frac{E_{VCC}}{I_{CC}}$

The voltage E_V evolves linearly with I_e and its equation is : $E_V = \frac{400}{92}I_e$

And $I_{CC} = 3.07 \times I_e$

$$\underline{Z_s} = \frac{E_{VCC}}{I_{CC}} = \frac{\frac{400}{92} I_e}{3.07 \times I_e} = \frac{\frac{400}{92}}{3.07} = 1.4 \Omega$$

c)
$$X_s = \sqrt{Z_s^2 - R_s^2} \approx 1.4 \,\Omega$$

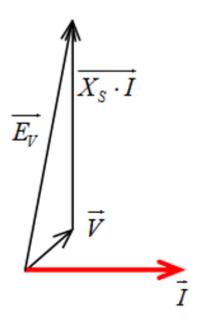
a) For no-load operation at rated (nominal) voltage V=115 V.

$$V = E_v = 115 V$$

$$E_v = \frac{400}{92}I_e$$
 so $I_e = \frac{92}{400}$ 115 = 26.5 A

b)
$$V_n = 115 V$$

$$X_S I_N = 1.4 \times 260 = 364 V$$


$$\cos \varphi = 0.75 \rightarrow \varphi_{V/I} = 41.5^{\circ}$$

On the diagram we read: $E_V = 450 V$

We can verify by calculation:

$$E_V = \sqrt{(V \cos \varphi)^2 + (V \sin \varphi + X_s I)^2}$$

$$E_V = \sqrt{(115 \cos 41.5)^2 + (115 \sin 41.5 + 364)^2} = 448 V$$

$$E_V = 450 V$$

 $E_V = \frac{400}{92} I_e$ so $I_e = \frac{92}{400} 450 = 102 A$