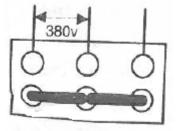

Exercise: Study of an induction motor in a radio telescope

Figure 1 shows the overall infrastructure of a radio telescope which may be considered as a measuring instrument. Figure 2 shows its simplified kinematic diagram.


The rotational movement of the platform (R1) with respect to a fixed frame (Bâti S0) is provided by an asynchronous motor (M1) controlled in both directions of rotation. Two tests were performed on this motor:

- No-load test ("à vide") : U=380 V between phases, 50 Hz, $I_0 = 3 A$, $P_0 = 500 W$
- Rated load test ("à charge nominale"): U=380 V between phases, 50Hz, I = 10 A, $P_a = 5Kw$, n=720 rpm (tr/min).

The resistance of a stator winding is $\mathbf{R} = 0.5 \Omega$.

1- The following coupling is performed on the terminal plate :

What type of coupling is? Give the voltages indicated on motor descriptive plate ("sur la plaque signalétique").

2- Determine the stator iron losses P_{fs} and mechanical losses P_{mec} knowing that :

$$P_{fs} = \frac{2}{3} P_{mec}$$

3- Calculate the power factor $\cos \varphi_0$ at no-load and deduce the reactive power at no-load.

- 4- For operation <u>at rated load</u>, calculate :
- a) Stator joule losses **P**_{js}.
- b) Transmitted power \dot{P}_{tr} .
- c) Slip g.
- d) Rotor joule losses P_{jr} .
- e) Useful output power P_u .
- f) Efficiency η .
- g) Power factor $\cos \varphi$.
- h) Impedance of each stator winding Z.
- 5- When the load torque applied to M1 is Tr = 40 Nm, is it (motor) capable of radio telescope rotational movement? Justify your answer.

Correction

Exercise: Study of an induction motor in a radio telescope

1) Is performed on the terminal plate the following coupling

The voltages indicated on the descriptive plate: 220v/380v.

2) The stator iron losses P_{fs} and mechanical losses P_{mec} with $P_{fs} = \frac{2}{3} P_{mec}$: $P_0 = P_{fs} + P_{mec} + P_{js_0} = P_{fs} + \frac{3}{2} P_{fs} + 3RI_0^2$ $\Rightarrow \frac{5}{2} P_{fs} = P_0 - 3RI_0^2 = 500 - 3 \times 0, 5 \times 3^2 = 486, 5 W$

Giving: $P_{fs} = \frac{2 \times 486,5}{5} = 194, 6 W \text{ and } P_{méc} = \frac{3}{2} P_{fs} = \frac{3}{2} \times 194, 6 = 292W$

3) Power factor $\cos \varphi_0$ and reactive power at no-load.

$$\cos \varphi_0 = \frac{P_0}{\sqrt{3} \times U \times I_0} = \frac{500}{\sqrt{3} \times 380 \times 3} = 0,256$$
$$\Rightarrow \varphi_0 = 75^\circ, 33 \text{ and } \sin \varphi_0 = 0,967$$

 $Q_0 = \sqrt{3} \times U \times I_0 \times \sin \varphi_0 = \sqrt{3} \times 380 \times 3 \times 0,967 = 1910VAR$

- 4) operation at rated load
- a) Stator joule losses P_{js} . $P_{is} = 3 \times R \times I^2 = 3 \times 0, 5 \times 10^2 = 150w$
- b) Transmitted power P_{tr} . $P_{tr} = P_a - P_{fs} - P_{js} = 5000 - 194, 5 - 150 = 4655, 5W$
- c) Slip g.

$$g = \frac{n_s - n}{n_s} = \frac{750 - 720}{750} = 0,04$$
 so $g\% = 4\%$

- d) Rotor joule losses P_{jr} . $P_{jr} = gP_{tr} = 0,04 \times 4655, 5 = 186,22 W$
- e) Useful output power P_u . $P_u = P_{tr} - P_{jr} - P_{mec} = 4655, 5 - 186, 22 - 292 = 4177W$
- f) Efficiency η

$$\eta = \frac{P_u}{P_a} = \frac{4177}{5000} = 0,835 \ so \ \eta\% = 83,5\%$$

www.da-engineering.com

g) Power factor $\cos \varphi$. $\cos \varphi = \frac{P_a}{\sqrt{3} \times 380 \times 10} = \frac{5000}{\sqrt{3} \times 380 \times 10} = 0,76$

h) Impedance of each stator winding Z.

$$Z = \frac{U}{\sqrt{3} \times I} = \frac{380}{\sqrt{3} \times 10} = 22 \Omega$$

5) Useful Torque : $T_u = \frac{P_u}{2\pi n} \times 60 = \frac{4177}{2\pi \times 720} \times 60 = 55,43Nm > T_r = 40Nm$ So motor M1 is capable of radio telescope rotational movement.