Exercise: Maximum power point tracker for a photovoltaic system

Maximum Power Point Tracking (MPPT), or MPP controller or MPP tracker is a principle to follow the maximum power point of a nonlinear electrical generator. MPPT systems are generally associated with PV or wind generators.

In this case, we propose to develop a fuzzy MPPT controller for a photovoltaic system (figure 3).

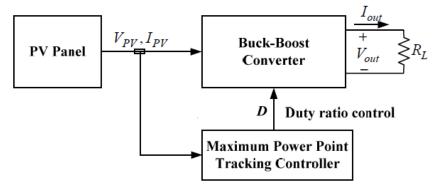


Figure 3: Solar power maximum power point tracking system.

The principle of this controller is to provoke perturbation by acting (decrease or increase) on the PWM duty cycle **D** and observing the effect on the output PV power. If the instant power Ppv(k) is greater than the previous computed power Ppv(k-1), then the direction of perturbation is maintained otherwise it is reversed. Referring to figure 4 this can be detailed as follows:

- when dPpv/dVpv > 0, the voltage is increased, this is done through D(k) = D(k-1) C, (C: incrementation step),
- when dPpv/dVpv < 0, the voltage is decreased through D(k) = D(k-1) + C.

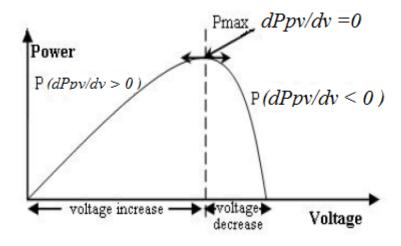


Figure 4: Power-voltage characteristic of a PV module.

The fuzzy logic MPPT system uses the slope of the PV cell's Power-Voltage (P-V) curve

(S(k)) and variation of slope ($\Delta S(k)$) as the fuzzy **input variables**. These variables are defined using the following equations:

$$S(k) = \frac{\Delta P_{PV}}{\Delta V_{PV}} = \frac{I_{PV}(k) \cdot V_{PV}(k) - I_{PV}(k-1) \cdot V_{PV}(k-1)}{V_{PV}(k) - V_{PV}(k-1)}$$
$$\Delta S(k) = S(k) - S(k-1)$$

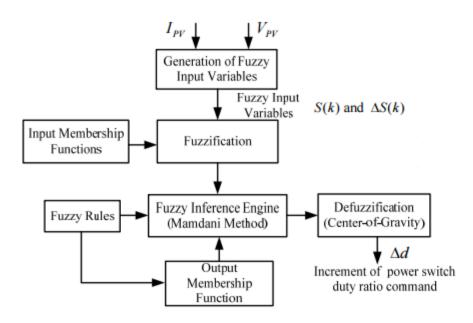
A five-term fuzzy set, positive big (PB), positive small (PS), zero (ZE), negative small (NS), and negative big (NB), is defined to describe each linguistic variable. **Output from the fuzzy controller (duty ratio command of the buck-boost converter)** would change the output voltage and current of the PV cell.

As $V_{out} = \frac{D}{1-D}V_{pv}$, if we increase D, we decrease V_{pv} . So for example, if S(k) is negative and Δ S(k) is negative than we have to decrease V_{pv} so to increase D.

We propose to develop a fuzzy MPPT controller for the photovoltaic system.

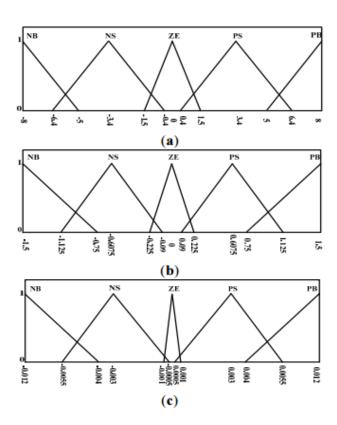
- 1) Make a computation flow diagram ("organigramme") of the fuzzy controller.
- 2) Draw inputs and output membership functions with notations (NB, NS, PB, PS, ZE).

Input 1 (**S(k)**) range: [-8 8]


Input 2 (Δ **S**(**k**)) range: [-1.5 1.5]

Output (ΔD : duty cycle variation) range: [-0.012 0.012].

- 3) Cite at least five if then rules as example.
- 4) Give the fuzzy logic rules table (Fuzzy Associative Matrix)


Correction

1)

Computation flow diagram of the fuzzy controller

2)

Membership functions for Algorithm (i): (a) Membership function for P-V slope, (b) Membership function for changes of slope; (c) Membership function for increment of duty ratio command.

3) If S(k) is NB and $\Delta S(k)$ is NB then ΔD is ZE If S(k) is NB and $\Delta S(k)$ is NS then ΔD is PB If S(k) is NS and $\Delta S(k)$ is NS then ΔD is PS If S(k) is ZE and $\Delta S(k)$ is ZE then ΔD is ZE If S(k) is PB and $\Delta S(k)$ is PB then ΔD is ZE

4)

Fuzzy Rule		S(k)				
		<u>NB</u>	NS	<u>ZE</u>	<u>PS</u>	PB
$\Delta S(k)$	<u>NB</u>	ZE	PB	PS	ZE	NB
	<u>NS</u>	PB	PS	ZE	ZE	NB
	ZE	PB	PS	ZE	NS	NB
	PS	PB	ZE	ZE	NS	NB
	<u>PB</u>	РВ	ZE	NS	NB	ZE
Region 1			Region	2 R	egion 3	